(4x^2+7x-3)/x+1

Simple and best practice solution for (4x^2+7x-3)/x+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4x^2+7x-3)/x+1 equation:


D( x )

x = 0

x = 0

x = 0

x in (-oo:0) U (0:+oo)

(4*x^2+7*x-3)/x+1 = 0

(4*x^2+7*x-3)/x+(1*x)/x = 0

4*x^2+7*x+1*x-3 = 0

4*x^2+8*x-3 = 0

4*x^2+8*x-3 = 0

4*x^2+8*x-3 = 0

DELTA = 8^2-(-3*4*4)

DELTA = 112

DELTA > 0

x = (112^(1/2)-8)/(2*4) or x = (-112^(1/2)-8)/(2*4)

x = (4*7^(1/2)-8)/8 or x = (-4*7^(1/2)-8)/8

(x-((-4*7^(1/2)-8)/8))*(x-((4*7^(1/2)-8)/8)) = 0

((x-((-4*7^(1/2)-8)/8))*(x-((4*7^(1/2)-8)/8)))/x = 0

((x-((-4*7^(1/2)-8)/8))*(x-((4*7^(1/2)-8)/8)))/x = 0 // * x

(x-((-4*7^(1/2)-8)/8))*(x-((4*7^(1/2)-8)/8)) = 0

( x-((-4*7^(1/2)-8)/8) )

x-((-4*7^(1/2)-8)/8) = 0 // + (-4*7^(1/2)-8)/8

x = (-4*7^(1/2)-8)/8

( x-((4*7^(1/2)-8)/8) )

x-((4*7^(1/2)-8)/8) = 0 // + (4*7^(1/2)-8)/8

x = (4*7^(1/2)-8)/8

x in { (-4*7^(1/2)-8)/8, (4*7^(1/2)-8)/8 }

See similar equations:

| 2.5x+24.5=12 | | 2x+2x+1=48 | | 4x^4-12x^2=0 | | 2n^2-20=3n | | 1/2x+21/2=15 | | 9+4x=137-28x | | 3/4x+5=22 | | (6x^2+3c)/3x | | 55x+21+7x=165 | | 5x+3=-2(4-3x)-2 | | y=2/5x-8 | | 7x^2=5-2x | | (1/(n^2+10n+24))-(3n/(n^2+8n+12)) | | 6x+14=-2x/-3-3 | | p^2+10p+31=7 | | 5x^2+8/7=4 | | j-6=-4 | | 4a^2=2a | | 3x^2-20x-63=0 | | 14x+42-25x=219 | | 4x+11=7(x-13) | | 1/3p+6-2/3p=0 | | x+2/4=8/15 | | 8x+2.5=3x+8 | | =(-3)(x+8) | | 4(x-3)=9(x-2) | | (3x-6)/2=12 | | =(x-3)(x+8) | | 4(20/12)/(4-3) | | 3+x=(x+1)+2 | | 3x-6/2 | | r^2-9r=-20 |

Equations solver categories